第1章 深度工作是有价值的(1/2)
随着 2012 年总统选举日的临近,《纽约时报》网站流量达到了高峰。出现流量高峰在全美国关注的重要时刻是很常见的,但是这一次情况有些不同。这些流量中有极大部分(有些记者称超过 70)流向诸多板块中的一个点。不是头版突发新闻故事,也不是报社普利策奖获得者的评论专栏,而是一个从棒球数据极客转行的竞选预测员的博客,这个人名叫内特·西尔弗(nate silver)。不到一年之后,娱乐与体育节目电视网(espn)和美国广播公司新闻网(abc news)将西尔弗从《纽约时报》挖走(《纽约时报》也尝试挽留他,承诺为他安排 12 名作家当助理),从而完成了一项重大交易。他们许可西尔弗做任何报道,从体育、天气预报到网络新闻领域,甚至令人难以置信地,还有奥斯卡颁奖典礼电视直播。尽管舆论对于西尔弗一手打造的模型方法论之严谨性仍有争议,但是极少有人否认,2012 年这位 35 岁的数据奇才是我们经济中的赢家。
另外一位赢家是大卫·海涅迈尔·汉森(david heeier hansn),他是一名电脑程序明星,创造了 ruby on rails1 网站开发框架,为当前网络上最流行的网站提供了基础,其中包括推特和 hu2 等。汉森是颇有影响力的开发公司 basecanals)的合伙人。汉森没有在公开场合谈及自己在 basecap 的利润分成等级,也未曾提及自己的其他收入来源,但是我们可以认定其收入很丰厚,足够他在芝加哥、马里布(alibu)和西班牙马贝拉(arbel)之间穿梭,同时在赛车比赛中有不俗表现。
我们的第三位也是最后一位经济生活赢家是约翰·杜尔(john doerr),他是闻名于世的硅谷风投公司凯鹏华盈(kleer perks caufield & byers)的普通合伙人。杜尔协助融资了多家引领科技变革的核心企业,包括推特、谷歌、亚马逊、网景公司和太阳微系统公司(sun icrosystes)等。这些投资的回报都是天文数字,在我写作本书时,杜尔的个人净资产超过 30 亿美元。
为什么西尔弗、汉森和杜尔能取得这样的成就?这个问题有两种答案。第一种是微观层面,关注个人性格和策略对此三人成功的帮助。第二种答案是宏观的,关注点较少落在个人身上,而更多在于他们所代表的工作类型。尽管对这个核心问题的两种阐释都很重要,但是宏观的回答与本书探讨的内容关系更密切,因为它们能够更好地反映出当前经济回报最高的是哪些领域。
要从宏观角度探究个中原因,我们首先要谈及两个麻省理工的经济学家,埃里克·布林约尔松(erik brynjolfsn)和安德鲁·麦卡菲(andrew ast the ache )中讲述了一个令人叹服的案例:在当今时代涌现出的各种力量中,恰是数字科技的崛起使我们的劳动力市场以一种未曾预想的方式发生改变。“我们正处于大重组最初的阵痛期。”布林约尔松和麦卡菲在他们的著作开端如此解释,“我们的科技日新月异,但是我们的很多技能和组织却严重落后。”对于很多工人而言,这种落后是坏消息。随着智能机器的不断改进,机器与人之间能力的差异逐渐缩小,雇主越来越多地选择聘用“新机器”而不是“新人类”。而只有人类可以做的工作也遭遇了问题,通讯和写作工具的发展使远程工作史无前例地方便,促使公司将关键岗位外包给行业中的翘楚,本地人才的失业率便会极高。
然而,这个冷酷的现实并没有渗透所有角落。布林约尔松和麦卡菲强调,这次大重组并没有碾压所有工作,而是将其分化。尽管在新经济形势下,越来越多的人因为技能可通过机械自动化实现或易于外包而遭遇挫败,但是还有一些人不仅能够存活,还变得比以往更有价值(也因此得到更多的回报)。提出这种经济双峰轨迹理念的并非只有布林约尔松和麦卡菲。比如,2013 年乔治梅森大学经济学家泰勒·考恩(tyler wen)出版了《平均时代的终结》(avera is over )一书,反映了数字分化这一主题。但是布林约尔松和麦卡菲的分析之所以特别有用,是因为他们更进一步,识别出了拥有三种特点的人群,这三类人在智能机器时代处于获利的一方,收获极大的利益。毫无疑问,西尔弗、汉森和杜尔恰恰属于这三类人。我们来逐一分析每一类型的人,从而更好地理解他们为什么突然变得如此有价值。
高级技术工人
布林约尔松和麦卡菲将以内特·西尔弗为代表的一类人称作“高级技术”工人。机器人和声控技术的发展使很多低技术要求的岗位实现了自动化,但是这两位经济学家强调:“诸如数据可视化、分析、高速通讯和快速原型设计等技术对抽象和数据导向型推理有了更高的要求,因此也提升了这些工作的价值。”换言之,那些有神奇工作能力,能够使用愈发复杂的机器创造出有价值成果的人将会成功。泰勒·考恩用更加坦率的方式总结了这种现实:“关键问题在于,你是否擅长使用智能机器?”
当然,内特·西尔弗擅长将数据嵌入到更大的数据库中,然后抽取数据存入他那神秘的蒙特卡洛模拟(onte carlo siutions)中,这恰恰是高级技术工人的一个缩影。智能机器并非西尔弗成功的障碍,而是他成功的前提。
超级明星
王牌程序员大卫·海涅迈尔·汉森代表着布林约尔松和麦卡菲预测将在新经济中取得成功的第二类人:“超级明星。”高速数据网络和电子邮件、视频会议软件等协作工具摧毁了知识工作的很多领域。比如,现在如果能够聘用汉森那样全球最优秀的程序员用一小段时间完成手头的项目,就没有必要再安排办公空间、支付薪酬福利去聘用全职的程序员了。在这种情况下,你很可能支付更少的钱得到更好的结果,而汉森每年也可以服务更多的客户,变得更有价值。
你的办公室在艾奥瓦州的得梅因(des oes),而汉森或许远在西班牙的马贝拉远程工作,这其实对你的公司而言并没有什么影响,因为随着通讯和协作科技的发展,整个协同过程几乎可以无缝连接。(然而,这对于那些生活在得梅因、技能略差并需要稳定工资收入的程序员而言就有关系了。)这种趋势在越来越多的领域都开始流行,在这些领域中科技使高效的远程工作成为可能——咨询、市场营销、写作和设计,等等。一旦人才市场可以全球共享,那么在市场顶端的人将会取得成功,而余下的人则会遭遇困境。
经济学家舍温·罗森(sher rosen)在 1981 年发表的一篇开创性论文中解出了这种“胜者通吃”市场背后的数学理论。他最核心的见解是明确地将才能(贴上标签、清晰可见的,在公式中用变量 q 表示)定义为一种“不完全替代”因素,罗森就此做出如下解释:“连续听一系列中等水平的歌手唱歌并不能累加成一场无与伦比的演出。”换言之,才能并非一种商品,你不可以通过大批购买,然后累积起来达到一定的水准,只有成为最优秀的才会有额外奖励。因此,如果你身处一个市场,消费者可以找到任何表演者,每个人的 q 值都是清晰的,那么消费者就会选择最好的。即使最优秀的才能相比技能阶梯下一级的才能仅有稍许优势,超级明星仍然会赢得大块市场。
在 20 世纪 80 年代,罗森研究这种现象的时候,他的关注重点在电影明星和音乐家,在这些领域有清晰的市场——比如音乐商店和电影剧院,观众可以接触到各种表演者,在做出购买选择之前准确地评估他们的才能。通讯和协作科技的迅猛发展使过去很多地方性市场转变成类似的全球化集市。一家寻找电脑程序员或公共关系咨询的小公司现在可以利用全球化人才市场达到目的,恰如音像店的出现使小镇的音乐迷可以抛弃本地音乐家去购买全球最棒乐队的专辑。换言之,超级明星效应在当今社会的应用远远超过罗森 30 年前所能预测的范围。在我们的社会经济中,越来越多的个体要与行业中的超级明星竞争。
所有者
在新经济形势下能够成功的最后一个群体是约翰·杜尔代表的一类人,他们是有资本可以投入新科技、促成大重组的人。从马克思以来,我们都能理解手握资本可以带来巨大的优势。然而在某些阶段手握资本,优势会更加明显。布林约尔松和麦卡菲指出,战后欧洲正是在错误的时间坐拥成堆现金的例子,迅猛的通货膨胀加上严苛的税收政策以惊人的速度抹平了旧资本。(我们或许将其称作“唐顿庄园效应”——“downton abbey effect”。)
大重组时代与战后时期不同,是拥有资本的绝佳时机。想要了解个中原因,首先要回顾一下那个交易理论,它也是标准经济思维的核心组成部分,该理论认为金钱是通过资本投资和劳动力获得的,粗略讲来,回报将与投入成正比。数字科技的发展降低了很多行业对劳动力的需求,因而掌握智能机器之人的回报比例在提高。当今经济下,风投公司会向 stagrara 最终卖出 10 亿美元,而雇员却仅仅 13 人。历史上有什么时候人们能以如此少的劳动力带来如此巨大的价值?劳动力投入如此之小,回流到智能机器拥有者——在此处是风投投资人——手中的财富却如此之巨,这种现象是史无前例的。难怪我在写作上一本书时采访的一位风投资本家不乏担忧地向我承认:“所有人都想要我的工作。”
我们来归纳一下目前所讲的思路:根据我的调研,当下的经济思维认为,史无前例的科技发展和影响力为我们的经济带来了巨大的重组。在这种新经济形势下,有三种人将获得特别的优势:可以利用智能机器把工作做得漂亮并具有创造性的,在所处行业中最优秀的,还有那些拥有资本的。在此要说明一点,布林约尔松、麦卡菲和考恩等经济学家所发现的大重组并非当前唯一重要的经济趋势,也并不是只有上述三个群体能够取得杰出的成就。但是本书的一个重要论点在于,尽管这些确实并非独有,但也是重要的,而这些群体——即便并非唯一的此类群体,也将取得成功。因此,如果你能成为其中任何一个群体的一员,你都会有出众的表现。如果不能,你或许也会有好的表现,但是你的地位会岌岌可危。
我们现在必须面对的问题已经很明晰:如何加入到这些成功者的群体中?冒着打消诸位不断高涨的热情的风险,我还是要先承认,我没有任何秘诀可以帮助你迅速积累财富,成为下一位约翰·杜尔。(如果我有这样的秘诀,也不太可能会在一本书中分享。)然而,进入另外两个赢家群体则是可实现的,这也是我们在下文中要解决的目标。
如何在新经济形势下成为赢家
我发现有两类人注定会成功,而且我认为可以推广借鉴:一种是能够利用智能机器进行创造性工作的,一种是自己所在领域的个中翘楚。在数字鸿沟不断扩大的当下,有什么窍门能够为进入此类有利领域提供助力?我认为如下两种核心能力是关键。
·迅速掌握复杂工具的能力
·在工作质量和速度方面都达到精英层次的能力
我们先来探讨一下第一种能力。开始之前先要提醒一下,像推特和 iphone 一类用户友好型的傻瓜科技已经把我们惯坏了。然而这些只能算作消费品,根本谈不上真正的工具:引导大重组的智能机器大多数都非常复杂,很难理解和掌握。
回想一下我们在前文中举例靠熟练掌握复杂科技而取得成功时提到的内特·西尔弗。如果我们深入发掘一下他使用的方法,就会发现生成数据驱动的选举结果预测并不像在搜索框中输入“谁将获得更多选票?”那么简单。实际上他汇集了一个大型民调结果数据库(从 250 个民意调查机构处获取的数千项民意调查结果),然后输入到 stata 软件中(stata 是一种很流行的数据分析系统,由一家名为 statarp 的公司研发)。此类工具并不容易掌握,比如,想要利用类似西尔弗使用的现代数据库工作,你就需要理解下面一类命令:
create view cities as select na, popution, altitude fro capitals union select na, popution, altitude fro non_capitals;
此类数据库汇编成一种语言,称作 sql。你利用如上所列的命令与数据库中储存的信息进行交流。想要操控此类数据库是一项非常精深的工作。比如上面一条命令会创建一种“视图”:一种从现有多种表中选取汇集数据的虚拟数据库表,该表可成为标准表利用 sql 核心进行基元处理。何时创建视图,如何熟练创建视图是个很微妙的问题,如果想要在现实世界的数据库中梳理出理性的结果,你需要理解和掌握的事情很多,上述便是其中一例。
我们还继续分析内特·西尔弗的例子,思考一下他依赖的另一项科技:stata。这是一种非常强大的工具,不可能靠着本能随便动动脑就能学会。比如下面一段话描述的是这种软件最新版本的一些新特性:“stata13 加入了很多新特性,比如处理效果、多层广义线性模型(gl)、检验效能和样本数、广义结构方程模型(se),预测、效应值、项目管理器、长字符串和 blobs(二进制大对象)以及其他很多。”西尔弗利用此类复杂的软件(包含广义结构方程模型和 blobs)创建复杂的模型,内含各种互相联系的部分:比如自定义参数的多元线性回归,就可以在概率算式中用来做顾客权重参考,等等。
这些细节旨在强调智能机器的复杂性是难以掌握的。3 因此,要想较好地运用这些机器,你就要培养出掌握复杂事物的能力。而且由于这些科技变化很快,掌握复杂事物的过程便永远不会结束:你必须能够快速完成,一次又一次。
当然,这种迅速掌握复杂事物的能力并不仅仅是能熟练运用智能机器所必需的;基本上也是想要成为任何领域的超级明星的关键因素,即便是与科技关联性很小的领域。比如,想要成为一名世界级的瑜伽训练师,就要求你掌握愈发复杂的身体技能组合。再举一个例子,想要在某个特定的医学领域取得成功,就要求你能快速掌握相关程序的最新研究成果。用更简洁的语言总结这些观察结果就是:如果你无法学习,就无法成功。
现在思考之前所提的第二项核心能力:达到精英水平。如果你想成为领域中的翘楚,掌握相关技能是必需的,但并不够。之后你必须将潜能转化成人们珍视的实在成果。比如,很多程序员对编程都很在行,但是我此前举例的超级明星大卫·汉森能利用这种能力创造出 ruby on rails,正是这个项目为他带来了声誉。ruby on rails 要求汉森将他当前的技能推向极限,创造出实在的价值和成果。
这种产出的能力同时也适用于以掌握智能机器为目标的人。对于内特·西尔弗而言,学会如何掌控大型数据组和进行数据分析并不够;他还需要证明自己能够利用这种技能,从这些机器中提取大众关注的信息。西尔弗在棒球资料(baseball prospect)工作期间与很多数据极客共事过,但是只有他努力将这些技能加以调整,用于全新的、更有利可图的选举预测领域。由此我们总结出想要加入当前经济形势下赢家群体的另一项要点:如果你不产出,就不会成功,不管你的技艺多么纯熟,天资多么聪颖。
我们已经列出两种在当今这个由科技分化的新世界里获得成功的能力,现在可以提一个显而易见的后续问题:如何才能培养出这些核心能力?讲到这里,我们便触及了本书的核心主题:上文阐述的两种核心能力依赖于你进行深度工作的能力 。如果你没有掌握这项基本能力,想要学习艰涩的知识或达到精英水平就会很挣扎。
这些能力对于深度工作的依赖性并非即时显现的,这要求我们更深入地探究与学习、专注和生产力相关的科学。接下来的章节将做深入探究,使深度工作和经济成功之间的这种联系为你转变——从意料之外到无懈可击。
深度工作帮助你迅速掌握困难的事物
“让你的头脑成为透镜,汇聚专注之光;让你的灵魂完全投入到头脑中的主导之物上,尽情吸收思想。”
上述建议出自多米尼加(does),他在 20 世纪初期写作了一本很薄却非常有影响力的小册子,名为《知性生活》(the tellectual life )。塞汀朗吉思写作这本书,旨在引导那些在思想界求生存的人“培养和深化自己的头脑”。塞汀朗吉思在《知性生活》中充分认识到掌握复杂材料的必要性,帮助读者为这类挑战做好准备。因为这个原因,这本书恰好契合我们的诉求,有助于我们更好地理解人类如何快速掌握复杂(认知性)技能。
为了理解塞汀朗吉思的建议,我们先回顾早先引用的那一段话。在这些文字中(在《知性生活》中有多种形式的回应)塞汀朗吉思称想要提升对自己所在领域的理解,你就必须系统地处理相关主题,做到“汇聚专注之光”,以发现每一处深藏的真理。换言之,他教导读者:学习需要深度专注。这种观念已经使他领先于时代。塞汀朗吉思反思 20 世纪 20 年代的思想生活,发现了关乎如何掌握有认知要求任务的一点事实,而这点事实直到 70 年后才得到学术界的正式定义。
本章未完,点击下一页继续阅读。